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1. Introduction
• We have achieved high performance 

execution of matrix operations using a new 
computation engine that runs in parallel on 
multicore CPUs.

• This is the first parallel system of its kind for 
Octave, an open source alternative to 
MATLAB and a language used by scientists 
and engineers for executing matrix 
operations.

• We have also developed a novel system for 
switching between matrix representations in 
a data dependence graph.

• By choosing the best representation for each 
operation, we minimise the overall execution 
time of all operations. 

• This system has a number of general 
applications, including switching between 
different computation engines. 

2. Background
• This project extends work by Khoury et al. 

(2010), who created the PS3 framework for 
accelerating Octave code using the Cell 
Broadband Engine. This is a multi-core chip 
used in the Sony’s PS3 game console. 

Motivation
• The execution of matrix operations can 

benefit greatly from parallelisation. However, 
languages like MATLAB and Octave, which 
are used extensively by scientists and 
engineers, do not support parallel execution. 

• Programming for parallel architectures is 
difficult because of issues such as race 
conditions and deadlocks. Octave users 
should not have to do this manually - 
therefore automatic parallelisation is needed.

The Framework
• The framework has three major components: 

Octave Extension, Administration and 
Computation Engine (see below).

• The Octave extension creates a data 
dependence graph from the Octave code. 
The optimal scheduling and partitioning of 
operations is then determined and the 
operations are then executed on the 
computation engine. 
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3. Multicore Computation Engine
Computation Engine
• The computation engine executes operations 

in parallel by using several CPU threads. 
• The engine receives a vector of matrix 

operations from the scheduler, one for each 
thread. 

• Each thread executes this sequence of 
operations, observing the dependencies 
between operations. If operands are not 
available, then the thread spin locks until it 
can proceed. 

• Modifications were also made to the lowerer. 
Unlike the Cell’s SPEs, which have limited 
memory, CPU threads have access to main 
memory. It is therefore possible to divide 
matrices into much larger blocks. 

• Experiments were conducted to determine 
the architecture-specific optimal block size.

Results
• A series of nine benchmarks were used to 

test the system’s performance on two 
2.33GHz Intel Xeon E5245 Quad-Core 
CPUs. A block size of 10,000 floats was 
found to be optimal for this architecture. 

• The results of these benchmarks (top of 
page) suggest that all benchmarks 
experienced substantial speedups. In 
particular, when fully utilising the Quad-Core 
CPU using four threads, the majority of 
benchmarks showed a speedup close to 4x.

• When eight threads were used, speedups of 
close to between 5 and 7x were achieved, 
which suggests exceptional utilisation of 
CPU resources.

• The exception to this was the nn (neural 
networks) benchmark, which slowed down 
when 8 threads were used. 

4. Switching Framework
Motivation
• It is possible to represent matrices in 

memory in multiple configurations. Due to 
CPU cache effects, the order in which matrix 
elements are accessed affects read and 
write times. 

• We implemented two matrix representations: 
row-major and submatrix contiguous. Our 
hypothesis was that some operations would 
be read/written faster in one representation 
than the other, allowing us to switch between 
them. 

The Switching Framework
• To determine the optimal reading and writing 

representation for each operation, we 
developed a framework that extends the 
metric labelling problem, using an ST-mincut 
to determine which representation should be 
used for each operation (see below). 

• Unfortunately, the representations we chose 
to implement proved to have very similar 
performance across all operations.

• However, the novel switching framework that 
we have developed has far more general 
applications, including switching between 
different computation engines (e.g. CPU and 
GPU) and representations which are 
significantly different. 

• We were able to use synthetic experiments 
to explore the efficiency of this framework 
further. 
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