
v1 = {0,1}

v2 = {0,1}

Op. 1

Op. 2

v3 = {0,1}

O
ct

av
e

Ad
m

in
ist

ra
tio

n

ps3_matrix
(Custom Octave Data Type)

Lowerer
(Operation Partitioning)

Scheduler
(Operation Scheduling)

Co
m

pu
ta

tio
n

En
gi

ne Multicore CPU

Read
State

Write
State

S T

Read
State

Write
State

∞

Op. 2

Op. 1

High Performance Execution of Matrix Languages
Dominic Balasuriya (dbal7610@it.usyd.edu.au)
Supervisor: Dr. Bernhard Scholz (scholz@it.usyd.edu.au)
School of Information Technologies

FACULTY OF ENGINEERING & INFORMATION TECHNOLOGIES

1. Introduction
• We have achieved high performance

execution of matrix operations using a new
computation engine that runs in parallel on
multicore CPUs.

• This is the first parallel system of its kind for
Octave, an open source alternative to
MATLAB and a language used by scientists
and engineers for executing matrix
operations.

• We have also developed a novel system for
switching between matrix representations in
a data dependence graph.

• By choosing the best representation for each
operation, we minimise the overall execution
time of all operations.

• This system has a number of general
applications, including switching between
different computation engines.

2. Background
• This project extends work by Khoury et al.

(2010), who created the PS3 framework for
accelerating Octave code using the Cell
Broadband Engine. This is a multi-core chip
used in the Sony’s PS3 game console.

Motivation
• The execution of matrix operations can

benefit greatly from parallelisation. However,
languages like MATLAB and Octave, which
are used extensively by scientists and
engineers, do not support parallel execution.

• Programming for parallel architectures is
difficult because of issues such as race
conditions and deadlocks. Octave users
should not have to do this manually -
therefore automatic parallelisation is needed.

The Framework
• The framework has three major components:

Octave Extension, Administration and
Computation Engine (see below).

• The Octave extension creates a data
dependence graph from the Octave code.
The optimal scheduling and partitioning of
operations is then determined and the
operations are then executed on the
computation engine.

THIS RESEARCH IS SP

3. Multicore Computation Engine
Computation Engine
• The computation engine executes operations

in parallel by using several CPU threads.
• The engine receives a vector of matrix

operations from the scheduler, one for each
thread.

• Each thread executes this sequence of
operations, observing the dependencies
between operations. If operands are not
available, then the thread spin locks until it
can proceed.

• Modifications were also made to the lowerer.
Unlike the Cell’s SPEs, which have limited
memory, CPU threads have access to main
memory. It is therefore possible to divide
matrices into much larger blocks.

• Experiments were conducted to determine
the architecture-specific optimal block size.

Results
• A series of nine benchmarks were used to

test the system’s performance on two
2.33GHz Intel Xeon E5245 Quad-Core
CPUs. A block size of 10,000 floats was
found to be optimal for this architecture.

• The results of these benchmarks (top of
page) suggest that all benchmarks
experienced substantial speedups. In
particular, when fully utilising the Quad-Core
CPU using four threads, the majority of
benchmarks showed a speedup close to 4x.

• When eight threads were used, speedups of
close to between 5 and 7x were achieved,
which suggests exceptional utilisation of
CPU resources.

• The exception to this was the nn (neural
networks) benchmark, which slowed down
when 8 threads were used.

4. Switching Framework
Motivation
• It is possible to represent matrices in

memory in multiple configurations. Due to
CPU cache effects, the order in which matrix
elements are accessed affects read and
write times.

• We implemented two matrix representations:
row-major and submatrix contiguous. Our
hypothesis was that some operations would
be read/written faster in one representation
than the other, allowing us to switch between
them.

The Switching Framework
• To determine the optimal reading and writing

representation for each operation, we
developed a framework that extends the
metric labelling problem, using an ST-mincut
to determine which representation should be
used for each operation (see below).

• Unfortunately, the representations we chose
to implement proved to have very similar
performance across all operations.

• However, the novel switching framework that
we have developed has far more general
applications, including switching between
different computation engines (e.g. CPU and
GPU) and representations which are
significantly different.

• We were able to use synthetic experiments
to explore the efficiency of this framework
further.

References
Khoury, R., Burgstaller, B. and Scholz, B. (2010) Accelerating
the Execution of Matrix Languages on the Cell Broadband
Engine Architecture. IEEE Transactions on Parallel and
Distributed Systems.

0

150

300

450

600

dft dma hill hits kmeans leontief markov nn reachability

Multicore Benchmark Performance

Ti
m

e
(s

)

1 2 4 8

Text

Threads Used:

1

2

3

4

5

6

7

1 2 4 8

Speedups Achieved

S
p

ee
d

up

Threads

dft dma
hill hits
kmeans leontief
markov nn
reachability

